27 research outputs found

    Importance Sampling for a Markov Modulated Queuing Network with Customer Impatience until the End of Service

    Get PDF
    For more than two decades, there has been a growing of interest in fast simulation techniques for estimating probabilities of rare events in queuing networks. Importance sampling is a variance reduction method for simulating rare events. The present paper carries out strict deadlines to the paper by Dupuis et al for a two node tandem network with feedback whose arrival and service rates are modulated by an exogenous finite state Markov process. We derive a closed form solution for the probability of missing deadlines. Then we have employed the results to an importance sampling technique to estimate the probability of total population overflow which is a rare event. We have also shown that the probability of this rare event may be affected by various deadline values.Importance Sampling, Queuing Network, Rare Event, Markov Process, Deadline

    Optimal Rules Identification for a Random Number Generator Using Cellular Learning Automata

    Get PDF
    The cryptography is known as one of most essential ways for protecting information against threats. Among all encryption algorithms, stream ciphering can be indicated as a sample of swift ways for this purpose, in which, a generator is applied to produce a sequence of bits as the key stream. Although this sequence is seems to be random, severely, it contains a pattern that repeats periodically. Linear Feedback Shift Registers and cellular automata have been used as pseudo-random number generator. Some challenges such as error propagation and pattern dependability have motivated the designers to use CA for this purpose. The most important issue in using cellular automata includes determining an optimal set of rules for cells. This paper focuses on selecting optimal rules set for such this generator with using an open cellular learning automata, which is a cellular automata with learning capability and interacts with local and global environments

    Recognizing the Emotional State Changes in Human Utterance by a Learning Statistical Method based on Gaussian Mixture Model

    Get PDF
    Speech is one of the most opulent and instant methods to express emotional characteristics of human beings, which conveys the cognitive and semantic concepts among humans. In this study, a statistical-based method for emotional recognition of speech signals is proposed, and a learning approach is introduced, which is based on the statistical model to classify internal feelings of the utterance. This approach analyzes and tracks the emotional state changes trend of speaker during the speech. The proposed method classifies utterance emotions in six standard classes including, boredom, fear, anger, neutral, disgust and sadness. For this purpose, it is applied the renowned speech corpus database, EmoDB, for training phase of the proposed approach. In this process, once the pre-processing tasks are done, the meaningful speech patterns and attributes are extracted by MFCC method, and meticulously selected by SFS method. Then, a statistical classification approach is called and altered to employ as a part of the method. This approach is entitled as the LGMM, which is used to categorize obtained features. Aftermath, with the help of the classification results, it is illustrated the emotional states changes trend to reveal speaker feelings. The proposed model also has been compared with some recent models of emotional speech classification, in which have been used similar methods and materials. Experimental results show an admissible overall recognition rate and stability in classifying the uttered speech in six emotional states, and also the proposed algorithm outperforms the other similar models in classification accuracy rates

    Human reliability analysis of the Tehran research reactor using the SPAR-H method

    No full text
    The purpose of this paper is to cover human reliability analysis of the Tehran research reactor using an appropriate method for the representation of human failure probabilities. In the present work, the technique for human error rate prediction and standardized plant analysis risk-human reliability methods have been utilized to quantify different categories of human errors, applied extensively to nuclear power plants. Human reliability analysis is, indeed, an integral and significant part of probabilistic safety analysis studies, without it probabilistic safety analysis would not be a systematic and complete representation of actual plant risks. In addition, possible human errors in research reactors constitute a significant part of the associated risk of such installations and including them in a probabilistic safety analysis for such facilities is a complicated issue. Standardized plant analysis risk-human can be used to address these concerns; it is a well-documented and systematic human reliability analysis system with tables for human performance choices prepared in consultation with experts in the domain. In this method, performance shaping factors are selected via tables, human action dependencies are accounted for, and the method is well designed for the intended use. In this study, in consultations with reactor operators, human errors are identified and adequate performance shaping factors are assigned to produce proper human failure probabilities. Our importance analysis has revealed that human action contained in the possibility of an external object falling on the reactor core are the most significant human errors concerning the Tehran research reactor to be considered in reactor emergency operating procedures and operator training programs aimed at improving reactor safety

    Computational Fluid Dynamics Analysis of Pulsatile Blood Flow Behavior in Modelled Stenosed Vessels with Different Severities

    No full text
    This study focuses on the behavior of blood flow in the stenosed vessels. Blood is modelled as an incompressible non-Newtonian fluid which is based on the power law viscosity model. A numerical technique based on the finite difference method is developed to simulate the blood flow taking into account the transient periodic behaviour of the blood flow in cardiac cycles. Also, pulsatile blood flow in the stenosed vessel is based on the Womersley model, and fluid flow in the lumen region is governed by the continuity equation and the Navier-Stokes equations. In this study, the stenosis shape is cosine by using Tu and Devil model. Comparing the results obtained from three stenosed vessels with 30%, 50%, and 75% area severity, we find that higher percent-area severity of stenosis leads to higher extrapressure jumps and higher blood speeds around the stenosis site. Also, we observe that the size of the stenosis in stenosed vessels does influence the blood flow. A little change on the cross-sectional value makes vast change on the blood flow rate. This simulation helps the people working in the field of physiological fluid dynamics as well as the medical practitioners

    CA for optimization

    No full text

    Importance Sampling for a Markov Modulated Queuing Network with Customer Impatience until the End of Service

    No full text
    For more than two decades, there has been a growing of interest in fast simulation techniques for estimating probabilities of rare events in queuing networks. Importance sampling is a variance reduction method for simulating rare events. The present paper carries out strict deadlines to the paper by Dupuis et al for a two node tandem network with feedback whose arrival and service rates are modulated by an exogenous finite state Markov process. We derive a closed form solution for the probability of missing deadlines. Then we have employed the results to an importance sampling technique to estimate the probability of total population overflow which is a rare event. We have also shown that the probability of this rare event may be affected by various deadline values
    corecore